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Abstract
In this paper, we develop a self-growing variant of the local model network (LMN) for
recursive dynamical system identification. The proposed model has the following features:
growing online structure, fast recursive updating rules, better memory use (no storage of
covariance matrices is required), and outlier-robustness. In this regard, efficiency in perfor-
mance and simplicity of implementation are the essential qualities of the proposed approach.
The proposed growing version of the LMNmodel results from a synergistic amalgamation of
two simple but powerful ideas. For this purpose, we adapt the neuron insertion strategy of the
resource-allocating network to LMN model, and replaces the standard OLS rule for param-
eter estimation with outlier-robust recursive rules. A comprehensive evaluation involving
three SISO and one MIMO benchmarking data sets corroborates the proposed approach’s
superior predictive performance in outlier-contaminated scenarios compared to fixed-size
LMN-based models.

Keywords Local model network · Growing models · System identification · Least mean
estimate

1 Introduction

Adynamical system is a natural or artificial processwhose inputs andoutputs present temporal
(or causal) dependence. By using observed data in the form of input-output time series,
instead of the equations of Physics, the goal of system identification is to learn that temporal
dependence, or dynamics, between input and output variables [32]. The identified model
can then be useful to describe, control, and simulate the systems of interest [50]. For this
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reason, system identification is an essential component of modern data-driven control and
automation engineering [9].

The field of computational intelligence has contributed with several methods to system
identification, starting probably with the Takagi-Sugeno (TS) fuzzy model [54] introduced
in the mid-1980s, and continuing with neural network-based approaches, such as the well-
known multilayer perceptron (MLP) network [43], the radial basis functions (RBF) [11]
network, and the self-organizingmap (SOM) [2, 3, 41, 56, 61].MLP-basedmodels implement
a global approach to system identification since the whole training set is used for building a
single predictive model. Alternatively, the TS-, RBF-, and SOM-based models implement a
local model approach, in the sense that multiple localized submodels are built, each submodel
using a partition of the data [13, 15]. The outputs of the multiple submodels can be either
aggregated or used individually to predict the model’s output.

Of particular interest to this paper is the local model network (LMN) approach to system
identification [4, 5, 14, 42, 47]. The LMNmodel was introduced by [25] as a generalization of
the RBF network so that to each hidden unit is associated with a linear regression submodel
(and, hence, to a vector of coefficients). The idea of using local regression models within
an RBF network was suggested in several works around the same time, for example, in the
related field of time series prediction [26, 52]. One positive consequence of using the LMN
model is that it requires less hidden units than the RBF network due to a better interpolation
property resulting from the linear regression submodels.

One drawback of the local approach is that the number of submodels is a hyperparameter,
i.e., it has to be specified before training effectively takes place. This limitation is solved
using growing models in which submodels are progressively inserted until a certain error-
based performance requisite (e.g., minimum acceptable accuracy) is reached. This approach
is also suitable to handle nonstationarity since the system dynamics may change over time,
and the model may be required to adapt its structure to deal with the new demands of the task.
The growing model approach to system identification and related tasks, such as time series
prediction, anomaly detection, fault diagnosis, and control, has received contributions from
different computational intelligence areas. For example, a TS-based growingmodel, in which
new fuzzy rules are inserted, is proposed in [1]. SOM-based growingmodels are introduced in
[31] and [27], while anRBF-based growingmodel is proposed in [20]. Finally, an LMN-based
growing model is recently introduced in [8] and applied to time series prediction.

In addition to a growing structure, a desirable requisite for a predictivemodel is robustness
to outliers, here understood in a broad sense as resilience to anomalous measurements. Such
abnormal samples are common in real-world applications and can be removed to some
extent before model building in offline settings. In online system identification scenarios,
outliers should be suitably handled by robust parameter estimation methods [19]. In this
sense, standard parameter estimation methods used in system identification, such as the
ordinary least squares (OLS), the least mean squares (LMS), and the recursive least squares
(RLS), are optimal under the assumption of Gaussianity of the errors [30, 63]. However,
such an assumption is unrealistic in outlier-rich applications, and the blind application of
non-robust parameter estimation methods often leads to biased models. Adequate handling
of outliers by the previously mentioned works on system identification is addressed only in
[5] and [8], who introduced a fixed-size and a growing robust LMN model, respectively.

In the current paper, we aim at extending the scope of application of the local model
network (LMN) to recursive dynamical system identification by introducing an outlier-robust
variant capable of inserting new local models when necessary. The proposed model has the
following features: (i) growing online structure for handling process nonstationarity; (i i)
fast recursive updating rule for rapid tracking of changes in system dynamics; (i i i) better
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memory use since no storage of covariance matrices is necessary, as required in RLS-like
learning rules; and (iv) outlier-robustness for adequate treatment of abnormal input-output
samples. To achieve these requisites, the proposed growing outlier-robust version of the LMN
model is built upon the neuron insertion strategy of the resource-allocating network (RAN)
[45] and the outlier-robustness concepts originating from the M-estimation framework [19].
The proposed approach is evaluated in three SISO and one MIMO benchmarking data sets
for recursive system identification. The achieved results consistently reveal the superior
performance of the proposed model over alternative models.

The remainder of the paper is organized as follows. The fixed-size LMN model and its
application to system identification is described in Sect. 2. The proposed growing LMN-
based approach is developed in Sect. 4, including all the necessary math for its correct
understanding, while its outlier-robust variant is presented in Sect. 5. Extensions of the
proposed growing models to the identification of MIMO systems are developed in Sect. 6.
Experiments are described in Sect. 7 with discussion of the reported results. The paper is
concluded in Sect. 8.

2 The Fixed-Size LMN-NARXModel

2.1 The NARXModel

Firstly, let us define the type of input-ouput dynamic model we are interested in. In this
regard, the dynamics of SISO systems are assumed to be adequately described by a nonlinear
autoregressive model with exogenous inputs (NARX) [32]

y(t) = G (y(t − 1), . . . , y(t − q); u(t − 1), . . . , u(t − p)) , (1)

where p and q denote the input and output memory orders, respectively. The target nonlinear
function G(·) : Rp+q → R is assumed to be unknown. Observed data in the form of input-
output time series are used to build an approximating model Ĝ(·) for the target function
G(·) by means of any universal function approximation model, such as neural networks and
fuzzy-based approaches. Whatever the choice, the n-th input regression vector x(t) ∈ R

p+q

is mounted by concatenating q past observed outputs y ∈ R and p past inputs u ∈ R into a
regression vector

x(t) = [y(t − 1) · · · y(t − q) | u(t − 1) · · · u(t − p)]T . (2)

When the LMNmodel is used to learn the dynamics of a given input-output system using
the input vectors as defined in Eq. (2), one gets a LMN-based NARXmodel, or LMN-NARX,
for short.

As already mentioned, we aim at developing an outlier-robust variant of the LMN-NARX
model suitable for online system identification. The standard LMN-NARX model has been
mostly used for offline system identification, a task in which the user can considerable time
to test network configurations with different numbers of hidden units [47]. Furthermore, the
model structure and parameters are kept fixed and unchangeable as time goes by. In online
system identification, adaptability is a crucial aspect of the model. As such, one expects a
predictive model that change its archictecture and adjust parameters accordingly as time goes
by, being capable of dealing with changes in the system dynamics and outliers naturally. For
this purpose, the number of hidden units of the LMN model should not be fixed in advance
but instead allowed to grow so that new hidden units could be inserted continuously. Previous
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Fig. 1 The architecture of the LMN network

and new parameters (those belonging to inserted hidden units) are modified recursively to
correctly track the system dynamics instead of using batch methods such as the OLSmethod.

2.2 The LMNModel

The LMN model (see Fig. 1) is better understood as an extension of the RBFN model, a
classical feedforward neural network architecture with a single hidden layer of neurons [11,
40, 46, 60]. These hidden neurons, usually called radial basis function units, have nonlinear
activation functions, while output neurons use linear ones. A general expression for the output
of the j-th basis function is given by

z j = φ
(
d(x, c j )

)
, (3)

subject to
∑S

j=1 z j = 1, where x ∈ R
p+q is the input vector, d(x, c j ) is a distance function,

with c j denoting the center of the j-th basis function, j = 1, . . . , S. The Euclidean distance
function, d(x, c j ) = ‖x − c j‖, and the Gaussian basis function φ(u) = exp(−0.5u2/σ 2) are
probably the most common choices, with σ denoting the radius (or width) of the Gaussian
basis function.

The design of the RBF network basically involves the specification of the number S of
basis functions, determination of their parameters (c j , σ j ), j = 1, . . . , S, and computation
of the output weights. Usually, the widths {σ j }Sj=1 are treated as hyperparameters of the RBF
network and must be computed in advance, i.e., before the estimation of the weights of the
output layer. In this regard, we follow the approach introduced by [40], which consists of
three stages executed sequentially. First, the positions of the S centers are found by means
of a vector quantization algorithm, such as the K -means or the SOM network [28]. Second,
heuristics are used for specifying the radius σ j for the S basis functions. In this paper, σ j is
computed as half of the distance between the center c j and the nearest center c j∗ , j∗ �= j .
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Finally, the third step requires estimating the output weights using the least mean squares
(LMS) learning rule [58].

Initially, we develop the proposed neural models for the identification of a SISO system;
hence we consider a single output neuron. Later on, we extended the models to handling
MIMO systems. Thus, the estimate of the output of the RBFN is then computed as

ŷ(t) = wT (t)z(t) =
S∑

j=1

w j (t)z j (t), (4)

where w(t) = [w1(t) w2(t) · · · wS(t)]T is the current weight vector of the output neuron
and z(t) = [z1(t) z2(t) · · · zS(t)]T is the response vector of the hidden neurons to the
current input vector x(t). The normalized LMS rule [59] is the sequential learning algorithm
used to adapt the output weights:

w(t + 1) = w(t) + α(t)e(t)
z(t)

ε + ‖z(t)‖2 , (5)

where e(t) = y(t) − ŷ(t) is the prediction error and 0 < ε � 1 is a small constant
necessary to avoid division by zero. The squared norm of z(t) is usually implemented as
‖z(t)‖2 = zT (t)z(t) for the sake of speed.

Remark 1 The RBFN-NARX model is closely related to the zero-order Takagi-Sugeno (TS)
model [54], with the outputs of the S basis functions expressing the activations of the S rules
and the consequent output values being represented by the output weights.

As mentioned in the introduction, the LMN model was introduced by [25] as a general-
ization of the RBF network for system identification [11]. It can be viewed as implementing
a decomposition of the global nonlinear input-output mapping into a set of local submodels,
which are then smoothly integrated by corresponding basis functions. The smoothing process
allows a smaller number of local models to cover larger areas of the input space than the
standard RBFN model.

More specifically, while the output of the RBFmodel is computed as in Eq. (4), the output
of the LMN model associates a local function f j (x;w j ) to each basis function, namely,

ŷ(t) =
S∑

j=1

z j (t)ŷ j (t) =
S∑

j=1

z j (t) f j (x,w j ; t), (6)

where ŷ j (t) is the prediction of the local f j . A common choice for this function is themultiple
linear regression function:

f j (x,w j ; t) = wT
j (t)x(t) + γ j (t), (7)

= w j1(t)x1(t) + · · · + w j,p+q(t)xp+q(t) + γ j (t), (8)

where γ j (t) ∈ R is the bias term of the j-th local function.
As the RBF-NARX model, LMN-NARX model has widespread use, with recent applica-

tions in system identification and control literature [4, 8, 14, 29, 36, 42].

Remark 2 The LMN-NARX model is closely related to 1st-order TS model, with the basis
functions playing the role of the rules, and the local function f j (x;w j ) = wT

j x being
the rules’ consequents. Rule weighting is governed by the normalized activations z j (t) =
z j (t)/

∑S
k=1 zk(t).
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3 GrowingModels: A Brief Presentation

3.1 Incremental Local Linear Mapping

LLM (Local Linear Mapping) based approaches generally assume a fixed number of centers
that are distributed in the input space by some vector quantization method. An incremental
network model for supervised learning was proposed in [17]. In this approach, error informa-
tion obtained during training is used to determine when and where to insert new units. The
network theory GNG (growing neural gas) [16] was used to give an incremental character to
the LLM model.

The GNG model described in [16] is unsupervised and inserts new units to reduce the
distance between the positioning of the prototype vectors and the input vector. For this reason,
distortion error is accumulated locally and new units are inserted close to the unit with the
highest accumulated error.

The GNG model [16] is a vector quantization algorithm, but when used with Hebb’s rule
it is able to preserve the topology of the input data in a similar way to the SOM network.
The GNG network incrementally builds a graphical representation of a given dataset that is
n-dimensional. The GNG method distributes a set of centers in Rnx . This is partially done in
adaptation stages, but mainly by interpolation of new centers among existing ones. Between
two centers there may be a link indicating neighborhood indicating neighborhood in R

nx .
These links are used for interpolation and are inserted according to the Hebb learning rules
[38] during the adaptation steps.

TheGNGmodelwas createdwith the intention of being unsupervised and inserts newunits
to reduce the average error between the input vectors and the prototype vectors. [17] described
how this principle could be used for supervised learning. First you have to define what the
output of the network is (which was not necessary for unsupervised learning). Then, use is
made of the difference between the actual output and the desired output to guide the insertions
of new units. The problem at hand is to approximate a function G(·) : RLu+Ly → R

ny , given
input-output pairs, with the particular case where ny = 1.

Associated with each neuron j in the network (positioned in w j in the input space), there
is an output ŷ j and a vector a j of dimension nx × 1 associated with this output, where
nx = Lu + Ly . The scalar ŷ j is the output of the network for cases where the input vectors
coincide with one of the centers, i.e. x(t) = w j . For any input vector, the nearest center s1
is determined and the network output ŷ(t) is calculated as follows:

ŷ(t) = ŷs1(t) + aTs1(t)(x(t) − ws1(t)), (9)

where the term ŷs1 is a local first approximation of the output with the second term providing
a first-order correction, in the guise of a Taylor expansion around the point ŷs1 .

We have to make a slight change in the original GNG algorithm to allow the proper
adjustment of the local linear models, since we are interested in reducing the mean squared
error. We then change the original equation from the GNG model to

Δes1(t) = |y(t) − ŷ(t)|2, (10)

where | · | denotes the absolute value.
Equation (10) means that now the error is accumulated locally with respect to the function

to be approximated. New units are inserted when this approximation is considered bad.
The local linear mappings a j associated with the network units are initially defined ran-

domly. In each adaptation step, the input-output data pair is used twice: (i) the input vector
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is used for the adaptation of the center and (i i) the entire pair is used to improve the input
vector. coefficients as1 from the nearest center s1. This is done using, once again, the LMS
rule [58]:

ŷs1(t + 1) = ŷs1(t) + αes1(t), (11)

as1(t + 1) = as1(t) + αes1(t)(x(t) − ws1), (12)

where 0 < α � 1 is the learning rate.
When a new unit r is inserted, a local linear mapping is interpolated between neighbors

q and f :

ŷr (t) = 0, 5(ŷq(t) + ŷ f (t)) (13)

ar (t) = 0, 5(aq(t) + a f (t)). (14)

A stopping criterion must be defined to terminate the growth process. This can be chosen
arbitrarily depending on the application. One possible choice is to observe the performance
of the network on a validation set during training and stop when that performance starts to
decline. Alternatively, the error in the training set can be used or simply the number of units
in the network if for some reason a specific network size is desired.

The model proposed by [17] became a driving force for the incremental approach of local
linear mappings. Some works found in the literature were proposed based on the presented
model [18, 22, 33, 55]. In [55], the proposal is very similar to that of [17], at each iteration,
the feedback information of the approximation error of the current model is used to make
the decision of inserting new local models in the area of input with the biggest error. He et
al. [22] proposed an adaptive incremental learning framework called adaptive incremental
learning (ADAIN), which is able to learn from data, accumulating experience over time and
using this knowledge to improve the future performance of learning and prediction. In [33],
the authors present a new learning framework for linear mappings based on deep learning
for image reconstruction. In this approach, the model is able to learn the mapping function
without neglecting the multi-layered nature of some applications.

3.2 Adapted RAN-LMSModel

The resource allocation network (RAN) was proposed by [45] and is a two-layer network,
similar to an RBF network, but with a growing structure. The first layer consists of hidden
units that respond only to a local region of the input space, that is, their neurons have a
localized receptive field. The second layer contains output units that aggregate outputs from
these units and create the function that approximates input-output mapping across the entire
space.

This network aims to build local representations of the underlying input-output mapping.
As already mentioned, the hidden units of the RAN network respond only to a local region
of the input space. The network learns by allocating new units and adjusting the parameters
of existing units. If the network malfunctions for a given input vector, as measured by the
output neuron’s approximation error, a new hidden unit is allocated to correct the network’s
response to that input vector. If the networkworks fine for a given input vector, the parameters
of existing output units will be updated using the standard LMS rule already described in
previous sections.

The RAN model starts as a tabula rasa; that is, no input-output pattern is stored yet. As
patterns are presented to it, the network chooses to store some of them. In other words, no
defaults have been chosen to be stored yet. Input-output pairs are presented and the network
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identifies a pattern that is not well represented at the moment and allocates a new hidden unit
that memorizes this sample. The output of the new hidden unit extends to the output layer.
After the new unit is allocated, the network output is equal to the desired output: ŷ(t) = y(t).
Let the index of this new unit be n. A formalization of the procedure for inserting a new
hidden unit is provided according [45]

1. The center of the new unit is defined as the cn = x(t).
2. The weight connecting the new hidden unit to the output unit is defined with wn =

y(t) − ŷ(t), where ŷ(t) can be calculated according to the Equation (4) of the RBF
model. It is worth mentioning that the RAN model resembles a growing model of the
RBF network.

3. The radius of the new hidden unit is given by

σn(t) = κ‖x(t) − cnearest (t)‖, (15)

such that κ > 0 is an overlap factor and cnearest is the center closest to cn .

To decide on the insertion of a new hidden unit, the RAN model checks two novelty
detection conditions.

Condition 1 Check if the input vector is too far from the existing centers, which is
checked by the following rule:

‖x(t) − cnearest (t)‖ > δ(t), (16)

where δ(t) is a decreasing threshold for novelty detection.
Condition 2 Check if the error between the desired output and the current network
output is large, that is,

|y(t) − ŷ(t)| > ε, (17)

where |·| is the absolute value operator and ε is the desired accuracy for the approximation
problem

Note 1: To stabilize the network growth process, the novelty threshold starts with a high value
δmax, decreasing with time until it reaches a minimum value δmin, which is kept constant for
the remainder of the learning process. In this regard, the decay function suggested in [45] is
used for the novelty threshold:

δ(t) = max
[
δmax exp(−t/τ), δmin

]
, (18)

where τ is a decay constant that defines the speed of inserting new hidden units and therefore
the number of hidden units that can be inserted.

When a new unit is not allocated, the centers of the existing hidden units and the output
neuron weights and threshold are adjusted through variants of the LMS rule developed below.
It is worth mentioning that these equations were developed in this thesis and differ greatly
from the original RAN model equations. Therefore, it was chosen to put this variant as a
proposal of this thesis. For the application of this rule, the global objective function of the
model is the instantaneous squared error of the output neuron:

JLMS(t) = 1

2
e2(t) = 1

2
(y(t) − ŷ(t))2, (19)

= 1

2

⎛

⎝y(t) −
S∑

j=1

z j (t)w j (t)

⎞

⎠

2

, (20)
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where w j (t) is the weight associated with the j-th hidden unit and z j (t) is the output of the
associated hidden unit. Therefore, to update the weight vector of the j th local function, the
following update rule is used:

w(t + 1) = w(t) − α(t)
∂ JLMS(t)

∂w(t)
, (21)

= w(t) − α(t)
∂ JLMS(t)

∂e(t)

∂e(t)

∂ ŷ(t)

∂ ŷ(t)

∂w(t)
, (22)

= w(t) − α(t)e(t) · (−1) · z(t), (23)

= w(t) + α(t)e(t)z(t), (24)

where it can be seen that the update of the weight vectors of the local submodels is modulated
by the outputs of the hidden units z j (t), j = 1, . . . , S. This modulation gives a localized
character to the parameter updating process. The greater the value of z j (t), the greater the
variation in the weight vector w(t).

Upgrading the centers of hidden units follows a similar procedure. For this, the global
objective function of the aforementioned model was used once again. In this case, the fol-
lowing rule applied:

c j (t + 1) = c j (t) − α(t)
∂ JLMS(t)

∂c j (t)
, (25)

= c j (t) − α(t)
∂ JLMS(t)

∂e(t)

∂e(t)

partial ŷ(t)

∂ ŷ(t)

∂z j (t)

∂z j (t)

∂c j (t)
, (26)

= c j (t) − α(t)e(t) · (−1) · w j (t) ·
(
z j (t)

σ 2
j

(x(t) − c j (t))

)

, (27)

= c j (t) + α(t)

σ 2
j

z j (t)e(t)w j (t)(x(t) − c j (t)), (28)

where Eq. (28) is derived using the Gaussian basis function. Equations (25), (26) and (27)
were developed for this paper seeking a better understanding of the updating of centers of
the hidden units performed in the work of [45].

For the experiments developed in this thesis, better results were obtained using the normal-
ized LMS rule [59]. To implement this variant of the LMS rule, replace the original learning
rate α(t)with α′(t) = α(t)/‖x(t)‖2, where ‖x(t)‖2 is the quadratic norm of the current input
vector.

The ease of implementation and low computational cost are two major attractions of
the RAN model. Pai et al. [44] applied RAN to estimate tool wear in milling operations.
Acoustic emission signals, surface roughness parameters and cutting conditions (cut speed,
feed) were used to formulate input patterns. The RAN performance was compared with the
MLP network.

Mahanand et al. [35] presented a new approach for the identification of brain regions
responsible for Alzheimer’s disease using magnetic resonance imaging. The approach incor-
porated a version of the RAN, the SRAN (self-adaptive resource allocation network) [53]
for the classification of Alzheimer’s disease. The SRAN classifier uses a sequential learning
algorithm, employing self-adaptive bounds to select the appropriate training samples and
discarding redundant samples to avoid overtraining. These selected training samples are then
used to efficiently develop the network architecture.

Bandyopadhyay [24] demonstrated the applicability of the RAN model through three
examples from various domains: water cooling network, carbon constrained energy sector
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planning and water allocation network. In [34], the RANmodel is trained offline to determine
an initial structure. From there, the initial RAN model is used for the online prediction of
photovoltaic energy and is later updated. The simulation results showed that the two-stage
RAN model can effectively improve the accuracy of PV output prediction.

Sun et al. [57] used the RAN model to estimate the parameters of a proportional-integral-
derivative (PID) controller for automated guided vehicles (AGV). The simulation results
show that the method has high performance, good tracking capability and high approach
accuracy.

It can be noted that, despite the formulation having taken place in the early 1990s, recent
applications of the RAN network are still found. This network will be used, with some
modifications, for the development of the first proposal of this thesis in the next section.

4 The Proposed Approach

As wementioned in the introduction, we are seeking an LMN-NARXmodel with the follow-
ing features: growing online structure (i.e., no need to define the hidden units beforehand),
fast (i.e., with few math operations) recursive updating rule, lightweight (i.e., small memory
use), and outlier-robust. In this regard, efficiency in performance and simplicity of imple-
mentation are the key issues to bear in mind. Some of the alternative algorithms available
today possess some of the features listed above, but not all of them, especially regarding the
recursive updating rule. Most of them use the RLS algorithm, which requires much more
memory space than the LMS algorithm due to the use of covariance matrices, one for each
neuron in the network.
Growing structure This feature of the proposed approach is implemented with the help of
the growing scheme of the RAN architecture [45], usually called nowadays as the novelty
criterion. The RAN is a two-layered network, which resembles an RBFN but with a growing
structure. The first layer consists of hidden units that respond to only a local partition of the
input space; that is, its neurons have a localized receptive field. The second layer contains
output units that aggregate outputs from these units and create the function that approximates
the input-output mapping over the entire space.

The RAN model learns by allocating new hidden units and adjusting the parameters of
existing ones. If the network performs poorly on a given input vector, as measured by the
approximation error of the output neuron, then a new hidden unit is allocated to correct the
network’s response to that input vector. If the network performs well on a given input vector,
then the parameters of existing output units are updated using the standard LMS updating
rule.

4.1 A Growing LMN-NARXModel

The novelty criterion of the RAN network will be adapt here to develop a variant of the LMN-
NARX model, which is capable of growing in time. The resulting algorithm is described
step-by-step in the following.
The learning process The G-LMN-NARX model starts with a single hidden unit. As the
input-output pairs starts to be presented, the network has to identify any pattern that is not
currentlywell represented by the neuralmodel and allocates a newhidden unit thatmemorizes
that sample. Once the new unit is allocated, the network output is set to the target output:
ŷ(t) = y(t). Let the index of this new unit be n. Details on the insertion procedure of a new
hidden unit is provided below.
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1. The center of the new hidden unit is set to cn = x(t).
2. The weight connecting the new hidden unit to the output unit is set to wn = y(t) − ŷ(t).
3. The radius of the new hidden unit is given by

σn(t) = κ‖x(t) − cnearest (t)‖ (29)

where κ > 0 is an overlapping factor and cnearest is the closest center to cn .
To decide on the insertion of a new hidden unit, the G-LMN-NARX verifies two novelty

criteria.

Criterion 1 checks how far is the input vector from existing centers by means of the
following rule:

‖x(t) − cnear (t)‖ > δ(t), (30)

where δ(t) is a decaying threshold for novelty detection.
Criterion 2 checks if the error between the target output and the current output of the
network is large, i.e.

|y(t) − ŷ(t)| > ε, (31)

where |·| is the absolute value operator and ε is the desired accuracy of the approximation
problem.

Remark 3 To stabilize the network’s growing process, Platt [45] suggests the following
annealing function for the novelty threshold:

δ(t) = max
[
δmax exp(−t/τ), δmin

]
, (32)

where τ is a decay constant defining the speed of insertion of new hidden units.

If a new hidden unit is not inserted, the existing hidden units’ centers, and the weights and
bias term of the output neuron are adjusted through variants of the LMS rule. For this purpose,
the global objective function of the model is the instantaneous squared error of the output
neuron:

JLMS(t) = 1

2
e2(t) = 1

2
(y(t) − ŷ(t))2, (33)

= 1

2

⎛

⎝y(t) −
S∑

j=1

z j (t)ŷ j (t)

⎞

⎠

2

, (34)

where ŷ j (t) is the output of the j-th local model and z j (t) is the output of the associated
hidden unit.

Hence, for updating the weight vector of the j-th local function, the following update rule
is used:

w j (t + 1) = w j (t) − α′(t) ∂ JLMS(t)

∂w j (t)
, (35)

= w j (t) − α′(t) ∂ JLMS(t)

∂e(t)

∂e(t)

∂ ŷ(t)

∂ ŷ(t)

∂ ŷ j (t)

∂ ŷ j (t)

∂w j (t)
, (36)

= w j (t) − α′(t)e(t) · (−1) · z j (t) · x(t), (37)

= w j (t) + α′(t)z j (t)e(t)x(t), (38)
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where α′(t) = α(t)/(ε + ‖x(t)‖2), with ‖x(t)‖2 denoting the squared norm of the current
input vector. It should be noted that the updating of the weight vectors of the local submodels
is modulated by the outputs of the hidden units z j (t), j = 1, . . . , S. This modulation gives
a localized character to the parameter updating process. The higher the values of z j (t), the
higher is the change in the weight vector w j (t).

The updating of the centers of the hidden units follows a similar procedure. In this case,
the following rule applies:

c j (t + 1) = c j (t) − α′(t) ∂ JLMS(t)

∂c j (t)
, (39)

= c j (t) − α′(t) ∂ JLMS(t)

∂e(t)

∂e(t)

∂ ŷ(t)

∂ ŷ(t)

∂z j (t)

∂z j (t)

∂c j (t)
, (40)

= w j (t) − α′(t)e(t) · (−1) · ŷ j (t) ·
(
z j (t)

σ 2
j

(x(t) − c j (t))

)

, (41)

= c j (t) + α′(t)
σ 2
j

z j (t)e(t)ŷ j (t)(x(t) − c j (t)), (42)

where Eq. (42) is derived by using the Gaussian basis function as defined in Eq. (3). The
pseudocode of the G-LMN-NARX model is presented in Algorithm 1.

Algorithm 1 G-LMN-NARX model
Initialization:

Define: p, q, κ , ε, τ , δmax , δmin , σ j , and α.
Set: δ0 = δmax , and S = 1.

Iterate: loop over presentations of input-output pairs
1. Prediction: For each input vector x(t), compute

1.1. z j (t) = φ
(
d(x(t), c j (t))

) ; j = 1, . . . , S.

1.2. z j (t) = z j (t)/
∑S

r=1 zr (t); j = 1, . . . , S.

1.3. f j (x,w j ; t) = w j (t)
T x(t) + γ j (t); j = 1, . . . , S.

1.4. ŷ(t) = ∑S
j=1 z j (t) f j (x,w j ; t);

2. Compute error:
2.1. e(t) = y(t) − ŷ(t);

3. Find the distance to nearest center:
3.1. dnear (t) = ‖x − cnear (t)‖;

4. Decide between Growing or Updating:
IF |e(t)| > ε and dnear (t) > δ(t), THEN
{ % Grows

Allocate new unit cn = x(t) and wn = e(t);
IF this is the first unit to be allocated,
THEN σn = κδ(t);
ELSE σn = κdnear (t).

}
ELSE
{ % Updates

Update the weight vectors using Eq. (38).
Update the centers using Eq. (42).
Update the novelty threshold using Eq. (32).

}

Remark 4 Our choice for the normalized LMS rule to update the parameters of the G-LMN-
NARX model relies in three important aspects. Firstly, it is a light-weight rule for parameter
estimation in comparison to the RLS rule, which is also a common alternative for recursive
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parameter updating [37], since there is no need to estimate S inverse covariance matrices of
dimension (p + q) × (p + q), one for each hidden unit, required to compute the associated
Kalman gain vectors. Secondly, it has been demonstrated that the normalized LMS rule is an
optimal filter in the H∞ sense [21], meaning that it minimizes themaximum energy gain from
the disturbances to the filtered errors. Finally, the third aspect is that an outlier-robust learning
rule is straightforwardly obtained from the original LMS rule with no extra computational
cost, as we show next.

5 An Outlier-Robust G-LMN-NARXModel

Real-world data are commonly contaminated with outliers, which are understood in a broad
sense as observations differing markedly from other samples. It is often assumed that outliers
follow a distribution other than the usual Gaussian noise, with heavy-tailed distribution (e.g.,
t-Student) being common choices. In this regard, standard estimation rules based on functions
of squared errors, such as the OLS (batch) and the LMS (recursive), lead to predictive
models with suboptimal performance since those rules are developed under the assumption
of Gaussianity of the noise. This assumption is adequate for the usual measurement noise,
but not for non-Gaussian noise.

Outliers’ undesirable influence is even more pronounced in online applications, where an
outlier-removal process is either harder or impossible to carry out in comparison to an offline
scenario. In online applications, a recursive outlier-robust estimation technique is required for
a good performance of the G-LMN-NARXmodel, primarily because the growing process in
this model depends on the prediction error y(t)− ŷ(t) (see Eq. (31)). If themodel’s prediction
is biased by the influence of outliers, the growing process of the G-LMN-NARX is prone to
be affected.

Robust estimation techniques have been developed which are resilient to outliers, such as
those developedwithin the framework ofM-estimators [23]. Based on this framework, robust
recursive estimators are found in [62] and [10], who introduced simple modifications to the
standard LMS-rule in order to improve its performance in outlier-rich data. The resulting
rule was then called least mean M-estimate (LMM) and is as fast as the original LMS rule,
in the sense that negligible computational burden is added to the estimation process.

In order to apply the underlying principle of the LMM rule to the updating rules of the
weight vectors w j and the centers c j of the G-LMN-NARX model, we start by redefining
the objective function in Eq. (33) to a more general expression given by

JLMM (t) = ρ(e(t)) = ρ(y(t) − ŷ(t)) = ρ

⎛

⎝y(t) −
S∑

j=1

z j (t)ŷ j (t)

⎞

⎠ , (43)

where the function ρ(·) computes the contribution of the current prediction error e(t) to the
objective function. The following requirements are imposed to the function:

1. ρ(e) ≥ 0;
2. ρ(0) = 0;
3. ρ(e) = ρ(−e);
4. ρ(e(t1)) ≥ ρ(e(t2)), se |e(t1)| > |e(t2)|.

For the system identification task, two functions stand out, namely, Hampel function [62]
andmodifiedHuber (HM) [10]. In this thesis, we used theModifiedHuber function described
as
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�(e(t)) =
{
e(t)2/2, se |e(t)| < β,

β2/2, otherwise,
(44)

where β is the abnormality threshold, which defines the range in which the residual is con-
sidered to be within or outside the usual standards.

If ρ(e(t)) = 1
2e

2(t), one gets the instantaneous squared error objective function used by
the LMS rule.

From the exposed, a robust variant of the updating rule of the weight vector of the j-th
local function, shown in Eq. (38), is given by

w j (t + 1) = w j (t) − α′(t) ∂ JLMM (t)

∂w j (t)
, (45)

= w j (t) − α′(t) ∂ρ(e(t))

∂e(t)

∂e(t)

∂ ŷ(t)

∂ ŷ(t)

∂ ŷ j (t)

∂ ŷ j (t)

∂w j (t)
, (46)

= w j (t) − α′(t)q(e(t))e(t) · (−1) · z j (t) · x(t), (47)

= w j (t) + α′(t)z j (t)q(e(t))e(t)x(t), (48)

where q(e(t)) = 1
e(t)

∂ρ(e(t))
∂e(t) is a function with the role of penalizing high values of the

residuals e(t) due to outliers.
It is important to highlight that the sole difference between Eqs. (48) and (38) is the

weighting factor q(e(t)). In this paper, since we are focused on simplicity and speed of
computation, our choice for q(e(t)) is the Huber function:

q(e(t)) =
{ κ

|e(t)| , if |e(t)| > β,

1, otherwise.
(49)

where the constant β > 0 is a user-defined threshold.
If |e(t)| ≤ β, then one gets q(e(t)) = 1, with Eq. (48) reducing to its original version

shown in Eq. (38). If |e(t)| > β, q(e(t)) decreases exponentially to zero as |e(t)| → ∞.
This way, the LMM updating rule effectively reduces the effect of large errors mostly caused
by outliers. It is recommended to use β = 1.345σ , where σ corresponds to the standard
deviation of the residuals.

By the same token, we can derive a robust version for updating the center of the j-th
hidden unit. Skipping the details, this is given by the following expression:

c j (t + 1) = c j (t) + α′(t)
σ 2
j

z j (t)q(e(t))e(t)ŷ j (t)(x(t) − c j (t)), (50)

which, for the Huber function defined in Eq. (49), reduces to Eq. (42) whenever |e(t)| ≤ β.
The pseudocode of the outlier-robustG-LMN-NARX (ORG-LMN-NARX, for short) model
is presented in Algorithm 2.

As mentioned in the introduction, as the first goal of this paper, we developed a growing
LMNmodel for NARX-based online system identification. This goal led to the development
of the G-LMN-NARX model. As the second goal, we aimed to add outlier-robustness to the
G-LMN-NARX model by replacing the original LMS rules for updating the weight vectors
of the local submodels and the centers of the hidden units. This goal led to the development of
the ORG-LMN-NARX model, which is expected to perform better than the G-LMN-NARX
model in the presence of outlier-rich scenarios. The computational experiments that test this
hypothesis and the obtained results are presented from the next section onwards.
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Algorithm 2 ORG-LMN-NARX model
Initialization:

Define: p, q, κ , ε, τ , δmax , δmin , σ j , α, and β.
Set: δ0 = δmax , and S = 1.

Iterate: loop over presentations of input-output pairs
1. Prediction: For each input vector x(t), compute

1.1. z j (t) = φ
(
d(x(t), c j (t))

) ; j = 1, . . . , S.

1.2. z j (t) = z j (t)/
∑S

r=1 zr (t); j = 1, . . . , S.

1.3. f j (x,w j ; t) = w j (t)
T x(t) + γ j (t); j = 1, . . . , S.

1.4. ŷ(t) = ∑S
j=1 z j (t) f j (x,w j ; t);

2. Compute error:
2.1. e(t) = y(t) − ŷ(t);

3. Compute weighting factor from Huber function:
IF |e| > β,
THEN q(e) = β /|e|;
ELSE q(e) = 1.

4. Find the distance to nearest center:
4.1. dnear (t) = ‖x − cnear (t)‖;

5. Decide between Growing or Updating:
IF |e(t)| > ε and dnear (t) > δ(t), THEN
{ % Grows

Allocate new unit cn = x(t) and wn = e(t);
IF this is the first unit to be allocated,
THEN σn = κδ(t);
ELSE σn = κdnear (t).

}
ELSE
{ % Updates

Update the weight vectors using Eq. (48).
Update the centers using Eq. (50).
Update the novelty threshold using Eq. (32).

}

6 TheMIMO Case

The previous developments aimed at SISO systems, but they can be straightforwardly
extended to the identification of MIMO dynamic systems. For this purpose, the regression
vector is augmented to encompass information about all input and output variables of interest
[32]. In this regard, we defined the input regression subvector ua(t − 1) associated with the
a-th input as

ua(t − 1) = [ua(t − 1) ua(t − 2) · · · ua(t − Lu)]T , a = 1, 2, · · · nu, (51)

where Lu denotes the memory order of the allinput variables, kept the same for all variables.
Likewise, we defined the output regression subvector yb(t − 1) associated with b-th output
as

yb(t − 1) = [yb(t − 1) yb(t − 2) · · · yb(t − Ly)]T , b = 1, 2, · · · ny, (52)

where Ly denotes the memory order of the output variables, kept the same for all variables.
Based on [6], the vector of regressors for the MIMO case is then given by

x(t) = [y1(t − 1) y2(t − 1) · · · yny (t − 1), u1(t − 1) u2(t − 1) · · · unu (t − 1)]
(53)

where x(t) ∈ R
(ny ·Ly+ny ·Lu ) and y(t) = G(x(t)) as illustrated in Fig. 2.

The nonlinear function G(·) : R
nx → R

ny is considered to be unknown and nx =
ny · Ly + nu · Lu . The observed data in the form of multiple input and multiple output
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Fig. 2 Scheme of a NARX
MIMO model, where G(·) is a
generic nonlinear function

time series is used to build an approximate model Ĝ(·) for the target function G(·). For this
purpose, we generalize the models described previously in this work to a MIMO system.

The G-LMN model will be described in more detail for the MIMO problem in the task
of learning the dynamics of a given MIMO system using the input vectors as defined in
Eq. (53). For this, we considered a neural model with an output layer with ny neurons. Thus,
the output of the G-LMN model associates a local vector function f j (x;w j ) to each basis
function, namely,

ŷ(t) =
S∑

j=1

z j (t)ŷ j (t) =
S∑

j=1

z j (t)f j (x,w j ; t), (54)

where ŷ j (t) ∈ R
ny is the local multidimensional prediction associated with f j ∈ R

ny , whose
components are given by

ŷ1(t) =
S∑

j=1

z j (t) f j,1(x,w j ; t),

ŷ2(t) =
S∑

j=1

z j (t) f j,2(x,w j ; t),

...
...

ŷny (t) =
S∑

j=1

z j (t) f j,ny (x,w j ; t). (55)

For this case, the learning process follows the same steps as in the SISO case. The for-
malization of the insertion of a new hidden unit is described below:

1. The center of the new hidden unit is given by cn = x(t).
2. The weight wn connecting the new unit to the output layer is given by a matrix with nx

rows with each row being equal to y(t) − ŷ(t).
3. The radius of the new unit is given by the Eq. (29).

For the MIMO case, the novelty criteria for inserting a new hidden unit are the same as
the ones used in the SISO case, with the Criterion 2 in (31) adapted to the multi-ouput case
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as follows:

‖y(t) − ŷ(t)‖ > ε, (56)

where ‖·‖ denotes the Euclidean norm.When a new unit is not allocated, the centers, weights
and thresholds must be adjusted using the LMS rule or the LMM rule. To apply this rule
to the MIMO case, the global objective function of the model, described in Eq. (33) for the
SISO model, is replaced by its MIMO counterpart:

JM IMO(t) = 1

2
‖e(t)‖2 = 1

2
‖y(t) − ŷ(t)‖2, (57)

= 1

2
‖y(t) −

S∑

j=1

z j (t)ŷ j (t)‖2, (58)

where ŷ j (t) ∈ R
ny is the output of the j-th local model and z j (t) is the output of the unit

associated hidden.
Therefore, to update the weight vector of the j-th local function, the updating rule in

Eq. (38) is changed to

⎛

⎜
⎝

w j,1(t + 1)
...

w j,ny (t + 1)

⎞

⎟
⎠

ny×nx

=
⎛

⎜
⎝

w j,1(t)
...

w j,ny (t)

⎞

⎟
⎠

ny×nx

− α′(t)z j (t)

⎛

⎜
⎝

e1(t)
...

eny (t)

⎞

⎟
⎠

ny×1

⎛

⎜
⎝

x1(t)
...

xnx (t)

⎞

⎟
⎠

T

1×nx

.

(59)

The updating rule for the centers of the hidden units, shown in Eq. (42) for the SISO case,
receives similar modifications to take into account the multiple outputs:

⎛

⎜
⎝

c j,1(t + 1)
...

c j,nx (t + 1)

⎞

⎟
⎠

nx×1

=
⎛

⎜
⎝

c j,1(t)
...

c j,nx (t)

⎞

⎟
⎠

nx×1

+ α′(t)
σ 2
j

z j (t)

⎛

⎜
⎝

ŷ1(t)
...

ŷny (t)

⎞

⎟
⎠

T

1×ny

⎛

⎜
⎝

e1(t)
...

eny (t)

⎞

⎟
⎠

ny×1

⎛

⎜
⎝

⎛

⎜
⎝

x1(t)
...

xnx (t)

⎞

⎟
⎠ −

⎛

⎜
⎝

c j,1(t)
...

c j,nx (t)

⎞

⎟
⎠

⎞

⎟
⎠

nx×1

(60)

Once the predicted outpus for the MIMO case have been computed at a given time step t ,
the corresponding prediction errors due to each output are calculated by

e1(t) = y1(t) −
S∑

j=1

z j (t) f j,1(x,w j ; t),

e2(t) = y2(t) −
S∑

j=1

z j (t) f j,2(x,w j ; t),

...

eny (t) = yny (t) −
S∑

j=1

z j (t) f j,ny (x,w j ; t). (61)
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Table 1 Summary of the evaluated data sets

Data set Evaluated datasets

Estimation samples Test samples L̂u L̂ y

Hydraulic Actuator 512 512 4 4

pH 200 800 5 5

Silverbox 91,072 40,000 10 10

7 Results and Discussion

In this section, we report the results of a comprehensive performance comparison between
the G-LMN-NARX and ORG-LMN-NARX models proposed in Sects. 4 and 5. The experi-
ments’ goal is to evaluate the ability of the proposed models in providing an incremental and
accurate model for dynamical system identification in the presence of outliers. For the sake
of completeness, a comparison with the fixed-size LMN-NARX model introduced in [5] is
provided.

All the evaluated models were implemented from scratch using the script language of
Octave,1 and the corresponding codes are available upon request. We report results on three
MISO benchmarking datasets (Hydraulic Actuator, pH, Silverbox), which are publicly avail-
able for download from the DaISy repository website at theKatholieke Universiteit Leuven.2

Some important features of Hydraulic Actuator, pH and Silverbox datasets are summarized
in Table 1.

The proposed models were also tested on a dataset originated from a MIMO system. For
this, we selected the Industrial Dryer dataset described in [7] and [12]. This system has 3
inputs (nu = 3), namely, rawmaterial flow rate u1(t), fuel flow rate u2(t), and hot gas exhaust
fan speed u3(t); and 3 outputs (ny = 3): dry bulb temperature y1(t), wet bulb temperature
y2(t) and raw material material moisture content y3(t). For better viewing of the amplitudes
of the input u1, they were divided by a factor of 17.

Accuracy of all the models is evaluated by the root mean square error: RMSE =√
1
N

∑N
t=1 e

2(t). The training was carried out using one-step-ahead prediction mode, a.k.a
as series-parallel training mode [48]. Outliers were artificially added only to training data in
different proportions. For this, we followed the procedure described in [39]. The reported
results correspond to the post-training evaluation of the model in outlier-free scenarios. The
rationale for this approach is to assess how the outliers affect the parameter estimation pro-
cess (training) and its impact in the model validation (testing) phase. Trained models were
tested under the free simulation regime, in which predicted output values are fed back to the
input regression vector.

During testing, the parameters of the models are not updated since our goal is to check
if the actual dynamics of the system of interest has been learned even in the presence of
outliers. We defined 100 epochs for training all models for the Actuator, pH and industrial
drier data sets, with one epoch meaning the presentation of the whole training set. An online
identification task is simulated only for the Silverbox data set because it is long enough
to allowing this type of test. The number of hidden units is initially set to S = 1 for the
growing models (G-LMN-NARX and ORG-LMN-NARX). For the fixed-size LMN-NARX

1 www.gnu.org/software/octave/.
2 http://homes.esat.kuleuven.be/~smc/daisy/.
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Fig. 3 RMSE values for test data
as a function of the percentage of
outliers in training data (Actuator
dataset). The robust models
perform better than the ones
using the usual LMS rule. The
proposed ORG-LMN-NARX
model is the best performing one
for this data set

models, this number is set to S = 7 as indicated by [5]. We trained the G-LMN-NARX
model using the following values for its hyparameters: κ = 0.9, δmax = max(‖x − c0‖),
δmin = δmax/10, τ = 10, and ε = 10−4. The initial and final learning rates were set to
α0 = 0.5 and αT = 0.001.
Results for the actuator data set

This data set consists of two time series (input: valve opening, output: oil pressure) each
comprised of 1024 measurements collected from a hydraulic actuator on a crane [50]. We
used 512 samples for model building and parameter estimation and the remaining half for
model validation. The RMSE values as a function of the percentage of outliers are shown in
Fig. 3. As expected, the robust fixed-size model (LMN-LMM) and its growing counterpart
(ORG-LMN-NARX) performed better than the non-robust versions (those using the plain
LMS rule). Furthermore, the ORG-LMN-NARX model was able to perform better than the
fixed-size LMN-LLM model. The performance of the proposed ORG-LMN-NARX model
is practically insensitive to the presence of outliers (i.e., the error curve is almost horizontal).

The improvement in performance achieved by the ORG-LMN-NARX model over its
LMS-based counterpart for the Actuator data set can be visualized in Fig. 4. This figure
shows typical predicted output time series in dashed red lines, while the actually observed
output time series is shown in solid blue lines. The corresponding evolution of the number
of local models for the two proposed models is shown in the upper row of the Fig. 5. This
number has stabilized in S = 7 for both models. It should be noted that the number of
local models grows faster for the robust ORG-LMN-NARX model, which uses the LMM
learning rule. This rule suitably handles outliers by minimizing their negative influence in
the parameter estimation process.

A positive side effect is that the outlier-detection mechanism of the LMM rule also sig-
nalizes to the adopted growing strategy that new local models should be included as soon as
possible in order to deal with the outliers’ negative influence. The effects of this interesting
property of proposed ORG-LMN-NARX model can be seen in the faster rate of decay of the
corresponding RMSE values, as shown in Fig. 6 (upper row). This decay rate is even more
pronounced for the other two evaluated data sets, as will be shown next (Fig. 7).

The RMSE values as a function of the percentage of outliers are shown in Table 2. As
expected, the robust models performed better than the non-robust versions. Furthermore, the
ORG-LMN model was able to perform better than the RAN-LMMmodel. The performance
of the proposed ORG-LMN model is practically insensitive to the presence of outliers. The
performance of the growing models was generally better than the fixed-size models. This
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Fig. 4 Typical predictive
performances of the proposed
models, G-LMN-NARX (upper)
and ORG-LMN-NARX (lower),
after being trained with 15% of
outliers (Actuator dataset)

confirms our hypothesis that growing models are better for dealing with a possible non-
stationarity of the system.
Results for the pH dataset

The data samples come from a pH neutralization process in a constant volume stirring
tank. The control input is the base solution flow and the output is the pH value of the solution
in the tank. We use the first 200 samples for model building and parameter estimation and
the next 800 samples for model validation.

Acomparison in termsofmeanRMSEvalues of the twofixed-sizemodels (LMN-LMSand
LMN-LMM) and the proposed growing models (G-LMN-NARX and ORG-LMN-NARX)
for the pH dataset is shown in Fig. 9 for different scenarios of outlier contamination. As
expected for the outlier-free scenario, the performances of the two fixed-size models (LMN-
LMS and LMN-LMM) are basically the same. However, as the level of outlier contamination
increases, one can again observe that the outlier-robust versions achieve better performance
than those models using the original LMS-based learning rule. For this data set the best
performance was achieved by the proposed ORG-LMN-NARX model.

Typical predicted output time series produced by the two proposed growing models for
the pH data set are shown in Fig. 8. A difference between the predictive performances of
the two models is hard to visualize, but the outlier-robust model (ORG-LMN-NARX) was
capable of improving the RMSE on the prediction task even further, as can be observed in
Table 3.

A comparison in terms of average RMSE values of the three models that use the LMS
rule for updating and the three robust models for the pH dataset is shown in Fig. 9 for
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Fig. 5 Evolution of the number
of local models associated with
hidden units as a function of the
training epochs for proposed
models, G-LMN-NARX (solid
blue line) and ORG-LMN-NARX
(dashed red line) for the Actuator
dataset (upper row), and the pH
dataset (lower row). (Color figure
online)

different contamination scenarios with outliers. As expected for the scenario free of outliers,
the performance of the models is practically the same. For this scenario, the INC-LLMmodel
(original and robust version) can be highlighted. These two models achieved lower RMSE
values.

Results for the Silverbox dataset
As a final experiment, we evaluate the performance of the proposed G-LMN-NARX and
ORG-LMN-NARX models on a large-scale data set. To this sake, we selected the Silverbox
dataset [49]. The samples are obtained from an electrical circuit simulating a mass-spring-
damper system, it corresponds to a nonlinear dynamical system with feedback, with a
dominant linear behavior. This data set contains a total of 131,072 samples of each sequence
un and yn , where the first 40,000 samples of un and yn were used for model building and
the remaining 91,072 for model validation. Since the Silverbox data set is lengthy, training
is not repeated for several epochs. Indeed, the model is trained in a fully online mode with
recursive parameter estimation, requiring only one pass through the data in order to converge
as shown in Fig. 10 for the the first 200 time steps. A closer look at this figure reveals that at
the beginning of training, the prediction error is high so that the predicted time series is far
from the observed series. As time goes by, the error values decrease and, hence, the predictive
performance becomes better and better.

Typical examples of the prediction results achieved by the G-LMN-NARX and ORG-
LMN-NARX models under free simulation regime for the Silverbox data set with 15% of
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Fig. 6 The RMSE values as the
number of local models increases
for the proposed models,
G-LMN-NARX (solid blue line)
and ORG-LMN-NARX (dashed
red line), for the Actuator dataset
(upper row) and the pH dataset
(lower row). (Color figure online)

Fig. 7 RMSE values for test data
as a function of the percentage of
outliers in training data (pH
dataset). The robust models
perform better than the ones
using the usual LMS rule. The
proposed ORG-LMN-NARX
model is the best performing one
for this data set.

outlier contamination are shown in Fig. 11. For the sake of visualization, we show only the
first 200 output samples of the validation data. For this large scale data set, for which the
models were trained in an online fashion (i.e., no repeated training over several epochs), the
better performance of the ORG-LMN-NARX model over its non-robust counterpart is clear.

A numerical comparison in terms of RMSE values of the two variants of the proposed
model (G-LMN-NARX and ORG-LMN-NARX) for the Silverbox data set is shown in
Table 4. As done previously, two scenarios were tested: the outlier-free scenario and one with
15% of outlier contamination. It can be observed that the deterioration of the performance
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Table 2 RMSE in the test for the hydraulic actuator dataset for two levels of contamination from outliers
(growing structures)

Models 0% Outliers 15% Outliers Models Epochs

RMSE STD RMSE STD

INC-LLM-LMS 3.14E−02 1.08E−04 2.12E−01 3.65E−04 8 100

INC-LLM-LMM 2.06E−02 1.01E−04 6.06E−02 8.04E−04 7 100

RAN-LMS 4.63E−02 2.14E−05 6.45E−01 6.34E−05 7 100

RAN-LMM 2.38E−02 1.89E−05 1.18E−01 2.17E−05 7 100

G-LMN 1.36E−02 4.68E−05 2.97E−01 3.98E−05 7 100

ORG-LMN 2.19E−02 1.78E−05 4.07E−02 1.33E−05 7 100

with the increase in contamination levels is much smaller for the robust ORG-LMN-NARX
model. The performances of the proposed models are also better than those achieved by
fixed-size models (LMN-LMS and LMN-LMM).
Evaluation by the Kolmogorov–Smirnov (KS) test

In a sum, the KS-test computes a distance between the empirical cumulative distribution
functions (CDF) of two sequences of residuals [51]. The null hypothesis to be tested is that

Fig. 8 Typical predictive performances of the proposed models, G-LMN-NARX (upper) and ORG-LMN-
NARX (lower), after being trained with 15% of outliers (pH dataset)

123

4279



J. A. Bessa et al.

Table 3 RMSE values for the LMN-LMM and ORG-LMN-NARX models on the pH data set for two levels
of outlier contamination

Models 0% Outliers 15% Outliers Models Epochs

RMSE STD RMSE STD

LMN-LMS (fixed-size, S = 7) 4.89E−01 2.64E−04 6.30E−01 1.42E−04 7 100

LMN-LMM (fixed-size, S = 7) 4.99E−01 1.23E−04 5.69E−01 2.96E−04 7 100

G-LMN-NARX (growing) 3.57E−01 7.56E−05 5.04E−01 8.81E−05 6 100

ORG-LMN-NARX (growing) 3.54E−01 6.69E−05 3.90E−01 7.01E−05 6 100

Fig. 9 RMSE values in the test as a function of the amount of outliers in the training data (pH neutralization
dataset)

Fig. 10 Performance of the proposed model ORG-LMN-NARX during the first 200 training steps for the
Silverbox data set. The upper figure shows the predicted output time series, while the lower figure shows the
corresponding evolution of the RMSE values
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Fig. 11 Typical predictive
performances of the proposed
models, G-LMN-NARX (upper)
and ORG-LMN-NARX (lower),
after being trained with 15% of
outliers (Silverbox data set)

Table 4 RMSE values for the G-LMN-NARX and ORG-LMN-NARX models on the Silverbox data set for
two levels of outlier contamination

Models 0% Outliers 15% Outliers Models Epochs

RMSE STD RMSE STD

LMN-LMS (fixed-size, S = 5) 3.98E−05 3.62E−07 5.34E−05 2.73E−07 5 1 (online)

LMN-LMM (fixed-size, S = 5) 3.24E−05 2.36E−07 3.59E−05 1.13E−07 5 1 (online)

G-LMN-NARX 1.50E−05 0 3.05 E−05 0 5 1 (online)

ORG-LMN-NARX 1.02E−05 0 1.18 E−05 0 5 1 (online)

the sequences are drawn from the same distribution [3]. The final set of experiments aims at
evaluating the degree of similarity, from a statistical point of view, between the sequence of
residuals generated by the models. The use of the KS-test in the present context is justified
by the need of evaluating the difference between the performances of two models. If two
allegedly different models generate statistically equivalent sequences of residuals (according
to the KS-test), then the two models should be considered equivalent to each other in reality.

The application of the KS-test for the sequences of residuals produced by the two pro-
posed models, G-LMN-NARX and ORG-LMN-NARX models, in the outlier-free scenario
indicates that the models are statistically equivalent. This equivalence can be inferred qual-
itatively by comparing the empirical CDFs of the residuals produced by the two models in
the outlier-free scenario, as shown in the upper row of Fig. 12. It is very hard to note any
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Fig. 12 Empirical CDFs of the
residuals generated by the
G-LMN-NARX model (solid
blue line) and the
ORG-LMN-NARX model
(dashed red line) for the Siverbox
data set. Outlier-free scenario
(upper row).
Outlier-contaminated scenario
(lower row). (Color figure online)

Table 5 RMSE values for the G-LMN-NARX model on the Industrial Dryer (MIMO) data set for four levels
of outlier contamination

Outliers (%) G-LMN

y1 y2 y3

0 2.35E−03 ± 0.00E0 4.43E−03 ± 0.00E0 2.27E−03 ± 0.00E0

5 2.44E−03 ± 0.00E0 4.49E−03 ± 0.00E0 2.29E−03 ± 0.00E0

10 4.54E−03 ± 0.00E0 6.40E−03 ± 0.00E0 3.03E−03 ± 0.00E0

15 9.48E−03 ± 0.00E0 7.30E−03 ± 0.00E0 5.21E−03 ± 0.00E0

Table 6 RMSE values for the ORG-LMN model on the Industrial Dryer (MIMO) data set for four levels of
outlier contamination

Outliers (%) ORG-LMN

y1 y2 y3

0 2.27E−03 ± 0.00E0 4.27E−03 ± 0.00E0 2.26E−03 ± 0.00E0

5 2.41E−03 ± 0.00E0 4.41E−03 ± 0.00E0 2.31E−03 ± 0.00E0

10 2.49E−03 ± 0.00E0 4.50E−03 ± 0.00E0 2.39E−03 ± 0.00E0

15 2.98E−03 ± 0.00E0 4.68E−03 ± 0.00E0 2.59E−03 ± 0.00E0

difference between the two CDFs. However, for the outlier-contaminated scenario, the corre-
sponding empirical CDFs of the residuals are shown in the lower row of Fig. 12, from which
one can clearly observe a difference between the two CDFs. By this result, one can infer that
the propsoed models present different predictive performances for the scenario with outlier
contamination.
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Fig. 13 RMSE values as a
function of the amount of outliers
of the training data for the output
variables y1, y2 and y3
(Industrial dryer MIMO data set)
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Fig. 14 Evolution of the number
of local models as a function of
training epochs for the proposed
ORG-LMN-NARX for the
industrial dryer MIMO data set

Results for the MIMO dataset
Finally, proposed approaches were also tested on a benchmarking dataset corresponding to a
MIMO system. For this purpose, we selected the industrial dryer dataset described in [7] and
[12] and available in the DaISy repository. For this data set, the values of the input variable
u1 are larger than those of the other two inputs (u1 � u2 and u3); for this reason, we chose to
normalize the data even before training for the range of values between 0 and 1. For the tests
with this data set, the initial and final learning rates were defined as α0 = 0.5 and αT = 0.001
for all models. For the GLMN models, it was defined κ = 0.9, δmax = max(‖x − c0‖),
δmin = δmax/5, τ = 5, and ε = 10−4.

A numerical comparison was made in terms of RMSE values of the two proposed
approaches (G-LMN-NARX and ORG-LMN-NARX). The results are shown in Tables 5
and 6. As before, different outlier-contamination scenarios were tested: one scenario free of
outliers, the others with 5%, 10% and 15% of outlier-contamination, respectively. It can be
seen that the performance deterioration with increasing contamination levels is much smaller
for the ORG-LMN-NARX model for all output variables.

The performance deterioration with increasing contamination levels can also be seen in
Fig. 13. The RMSE values for the output variable y1 are shown in the upper figure, while
for the output variables y2 and y3 the RMSE values are shown in the middle lower figures,
respectively. The performance of the ORG-LMN-NARX model is practically insensitive
to the presence of outliers. The INC-LLM-LMM model is also noteworthy regarding its
sensitivity to outliers. In Fig. 14, we show the evolution of the number of local models as a
function of training epochs for the ORG-LMN-NARX only.

Tests using the k-steps ahead prediction methodology were performed for the Industrial
Dryer MIMO data set. The results for scenarios contaminated with 15% outliers for the
ORG-LMN-NARXmodel only are reported in Table 7. It is possible to notice that the RMSE
values for the free simulation scenario are of the same order of magnitude of those achieved
for k = 1, 2, and 3 steps-ahead prediction, indicating that the model indeed learned the
underlying dynamics of the identified system.

For the sake of completeness, typical time series for the output variables (y1, y2 and y3)
predicted by the ORG-LMN-NARX model in scenarios contaminated with 15% of outliers
for theMIMOdata set are shown inFig. 15.A simpe visual inspection reveals a goodmatching
between observed and predicted values. It should be emphasized that these results correspond
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to time series which are being predicted under the free simulation regime, a considerably
harder task than k = 1, 2, and 3 steps-ahead predictions.

Table 7 RMSE values achieved by the ORG-LMN-NARX model as a function of the prediction horizon
during test phase in scenarios contaminated with 15% of outliers

Outliers ORG-LMN-NARX

Output y1 Output y2 Output y3

One-step ahead 1.58E−03 ± 0.00E0 2.17E−03 ± 0.00E0 1.12E−03 ± 0.00E0

Two-steps ahead 2.11E−03 ± 0.00E0 2.98E−03 ± 0.00E0 1.94E−03 ± 0.00E0

Three-steps ahead 2.59E−03 ± 0.00E0 3.17E−03 ± 0.00E0 2.04E−03 ± 0.00E0

Free simulation 2.98E−03 ± 0.00E0 4.68E−03 ± 0.00E0 2.59E−03 ± 0.00E0

Fig. 15 Typical time series predicted under the free simulation regime by the proposed ORG-LMN-NARX
model for the output variables (y1, y2 and y3) in scenarios contaminated with 15% of outliers (industrial drier
MIMO data set)
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8 Conclusions and Further Work

In this paper, we introduced growing LMN-based models for online system identification in
the presence of outliers. Growing models do not require the prior specification of the number
of hidden units, with a new unit inserted only when required by the model’s performance. We
carefully addressed via a comprehensive set of numerical experiments how outliers affect the
parameter estimation (i.e., learning) of the identified model. The simulations involved four
bechmarking data sets (3 SISO, 1 MIMO) for dynamical system identification.

We developed the learning equations of two growing LMN-based model algorithms. This
first model, named G-LMN-NARX, handles nonstationarity well but performs poorly in
outlier-contaminated scenarios. Thus, an outlier-robust variant, named ORG-LMN-NARX,
was then developed by introducing suitablemodifications in all the learning rules. Themodifi-
cations involved the replacement of the original LMS-like rule by a robust variant of it, known
as the LMM rule. This simple but relevant modification was able to offer more resilience
to outliers to the original G-LMN-NARX model. The performance comparison results with
four benchmarking data sets revealed a considerable improvement in the performances of
the proposed local models in outlier-contaminated scenarios.

We are currently evaluating the proposed ORG-LMN-NARXmodel as a parameterization
method for the classification of different operating states of dynamical systems for fault
detection purposes. This use is also being investigated to classify epileptic seizures from
EEG signals and for motor imagery classification.

Acknowledgements This study was financed by the following Brazilian research funding agencies: CAPES
(Finance Code 001), CNPq Grants No. 309379/2019-9 (2nd author) and 311211/2017-8 (3rd author).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Availability of data and materials The data used in the experiments reported in this paper are available for
public use and can be freely downloaded for scientific purposes from the website indicated in the text.

Code availability The Octave/Matlab codes of the proposed approach are available for scientific purposes and
can be provided upon request.

References

1. Angelov PP, Filev DP (2004) An approach to online identification of Takagi-Sugeno fuzzy models. IEEE
Trans Syst Man Cybern Part B 34(1):484–497

2. Barreto GA,Araújo AFR (2004) Identification and control of dynamical systems using the self-organizing
map. IEEE Trans Neural Netw 15(5):1244–1259

3. Barreto GA, Souza LGM (2016) Novel approaches for parameter estimation of local linear models for
dynamical system identification. Appl Intell 44(1):149–165

4. Belz J, Münker T, Heinz TO, Kampmann G, Nelles O (2017) Automatic modeling with local model
networks for benchmark processes. IFAC-PapersOnLine 50(1):470–475

5. Bessa JA, Barreto GA (2019) Recursive system identification using outlier-robust local models. IFAC-
PapersOnLine 52(1):436–441

6. Billings SA (2013) Nonlinear system identification: NARMAX methods in the time, frequency, and
spatio-temporal domains. Wiley, London

7. Bittanti S, Picci G (1996) Identification, adaptation, learning: the science of learning models from data

123

4286



An Outlier-Robust Growing Local Model Network for...
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