Com o intuito de obter uma segmentação da fissura pulmonar mais eficaz, o presente trabalho possui o objetivo de realizar a segmentação das fissuras utilizando medidas de textura LBP e Redes Neurais Artificiais. Para a implementação do algoritmo foi utilizado uma MLP (Multilayer Perceptron). Para realizar as validações do algoritmo foi criado um padrão-ouro extraído um total de 100 imagens de 5 exames do banco de dados LOLA11. Para o conjunto de imagens testadas, o classificador obteve um melhor desempenho quando o tamanho, 15×15 pixels, da janela foi utilizado para gerar o histograma do LBP. A baixa incidência de detecções falso negativas, juntamente com a redução de detecções falso positivas, resulta em taxa de acerto elevada. Conclui-se que a técnica de segmentação de fissuras pulmonares é um algoritmo útil para segmentar fissuras pulmonares em imagens de TC, e com o potencial de integrar sistemas que auxiliem o diagnóstico médico